2 6 Fe b 20 08 POISSON SUSPENSIONS AND INFINITE ERGODIC THEORY

نویسنده

  • EMMANUEL ROY
چکیده

We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaussian dynamical systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 08 POISSON SUSPENSIONS AND INFINITE ERGODIC THEORY

We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure preserving ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar l...

متن کامل

Poisson suspensions and infinite ergodic theory

We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaus...

متن کامل

Quasi-factors for Infinite-measure Preserving Transformations

This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...

متن کامل

Where the linearized Poisson-Boltzmann cell model fails: (I) spurious phase separation in charged colloidal suspensions

We perform a linearization of the Poisson-Boltzmann (PB) density functional for spherical WignerSeitz cells that yields Debye-Hückel-like equations agreeing asymptotically with the PB results in the weak-coupling (high-temperature) limit. Both the canonical (fixed number of microions) as well as the semi-grand-canonical (in contact with an infinite salt reservoir) cases are considered and discu...

متن کامل

Rayleigh instability of charged aggregates: Role of the dimensionality, ionic strength, and dielectric contrast.

We extended a previous analysis of the classical Rayleigh instability of spherical charged droplets in the presence of neutralizing monovalent counterions [M. Deserno, Eur. Phys. J. E 6, 163 (2001)], by generalizing the problem for suspensions of aggregates with D-dimensional symmetry, corresponding for D = 2 to infinite (rodlike) cylindrical charged bundles and for D = 3 to spherical charged d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008